2,465 research outputs found

    Recent Star Formation in Sextans A

    Full text link
    We investigate the relationship between the spatial distributions of stellar populations and of neutral and ionized gas in the Local Group dwarf irregular galaxy Sextans A. This galaxy is currently experiencing a burst of localized star formation, the trigger of which is unknown. We have resolved various populations of stars via deep UBV(RI)_C imaging over an area with diameter \sim 5.'3. We have compared our photometry with theoretical isochrones appropriate for Sextans A, in order to determine the ages of these populations. We have mapped out the history of star formation, most accurately for times \lesssim 100 Myr. We find that star formation in Sextans A is correlated both in time and space, especially for the most recent (\lesssim 12 Myr) times. The youngest stars in the galaxy are forming primarily along the inner edge of the large H I shell. Somewhat older populations, \lesssim 50 Myr, are found inward of the youngest stars. Progressively older star formation, from \sim 50--100 Myr, appears to have some spatially coherent structure and is more centrally concentrated. The oldest stars we can accurately sample appear to have approximately a uniform spatial distribution, which extends beyond a surface brightness of \mu_B \simeq 25.9 mag arcsec^{-2} (or, a radius r \simeq 2.'3$). Although other processes are also possible, our data provides support for a mechanism of supernova-driven expansion of the neutral gas, resulting in cold gas pileup and compression along the H I shell and sequential star formation in recent times.Comment: 64 pages, 22 figures, to appear in A

    A Test of the Standard Hypothesis for the Origin of the HI Holes in Holmberg II

    Get PDF
    The nearby irregular galaxy Holmberg II has been extensively mapped in HI using the Very Large Array (VLA), revealing intricate structure in its interstellar gas component (Puche et al. 1992). An analysis of these structures shows the neutral gas to contain a number of expanding HI holes. The formation of the HI holes has been attributed to multiple supernova events occurring within wind-blown shells around young, massive star clusters, with as many as 10-200 supernovae required to produce many of the holes. From the sizes and expansion velocities of the holes, Puche et al. assigned ages of ~10^7 to 10^8 years. If the supernova scenario for the formation of the HI holes is correct, it implies the existence of star clusters with a substantial population of late-B, A and F main sequence stars at the centers of the holes. Many of these clusters should be detectable in deep ground-based CCD images of the galaxy. In order to test the supernova hypothesis for the formation of the HI holes, we have obtained and analyzed deep broad-band BVR and narrow-band H-alpha images of Ho II. We compare the optical and HI data and search for evidence of the expected star clusters in and around the HI holes. We also use the HI data to constrain models of the expected remnant stellar population. We show that in several of the holes the observed upper limits for the remnant cluster brightness are strongly inconsistent with the SNe hypothesis described in Puche et al. Moreover, many of the HI holes are located in regions of very low optical surface brightness which show no indication of recent star formation. Here we present our findings and explore possible alternative explanations for the existence of the HI holes in Ho II, including the suggestion that some of the holes were produced by Gamma-ray burst events.Comment: 30 pages, including 6 tables and 3 images. To appear in Astron. Journal (June 1999

    The unidentified TeV source (TeVJ2032+4130) and surrounding field: Final HEGRA IACT-System results

    Get PDF
    The unidentified TeV source in Cygnus is now confirmed by follow-up observations from 2002 with the HEGRA stereoscopic system of Cherenkov Telescopes. Using all data (1999 to 2002) we confirm this new source as steady in flux over the four years of data taking, extended with radius 6.2 arcmin (+-1.2 arcmin (stat) +-0.9 arcmin (sys)) and exhibiting a hard spectrum with photon index -1.9. It is located in the direction of the dense OB stellar association, Cygnus OB2. Its integral flux above energies E>1 TeV amounts to \~5% of the Crab assuming a Gaussian profile for the intrinsic source morphology. There is no obvious counterpart at radio, optical nor X-ray energies, leaving TeVJ2032+4130 presently unidentified. Observational parameters of this source are updated here and some astrophysical discussion is provided. Also included are upper limits for a number of other interesting sources in the FoV, including the famous microquasar Cygnus X-3.Comment: 7 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    Mirror Position Determination for the Alignment of Cherenkov Telescopes

    Full text link
    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures to map the faint Cherenkov light emitted in extensive air showers onto their image sensors. Segmented reflectors fulfill these needs using mass produced and light weight mirror facets. However, as the overall image is the sum of the individual mirror facet images, alignment is important. Here we present a method to determine the mirror facet positions on a segmented reflector in a very direct way. Our method reconstructs the mirror facet positions from photographs and a laser distance meter measurement which goes from the center of the image sensor plane to the center of each mirror facet. We use our method to both align the mirror facet positions and to feed the measured positions into our IACT simulation. We demonstrate our implementation on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and implementation demonstratio

    The ALFALFA "Almost Darks" Campaign: Pilot VLA HI Observations of Five High Mass-to-Light Ratio Systems

    Get PDF
    We present VLA HI spectral line imaging of 5 sources discovered by ALFALFA. These targets are drawn from a larger sample of systems that were not uniquely identified with optical counterparts during ALFALFA processing, and as such have unusually high HI mass to light ratios. These candidate "Almost Dark" objects fall into 4 categories: 1) objects with nearby HI neighbors that are likely of tidal origin; 2) objects that appear to be part of a system of multiple HI sources, but which may not be tidal in origin; 3) objects isolated from nearby ALFALFA HI detections, but located near a gas-poor early-type galaxy; 4) apparently isolated sources, with no object of coincident redshift within ~400 kpc. Roughly 75% of the 200 objects without identified counterparts in the α\alpha.40 database (Haynes et al. 2011) fall into category 1. This pilot sample contains the first five sources observed as part of a larger effort to characterize HI sources with no readily identifiable optical counterpart at single dish resolution. These objects span a range of HI mass [7.41 < log(MHI_{\rm HI}) < 9.51] and HI mass to B-band luminosity ratios (3 < MHI_{\rm HI}/LB_{\rm B} < 9). We compare the HI total intensity and velocity fields to SDSS optical imaging and to archival GALEX UV imaging. Four of the sources with uncertain or no optical counterpart in the ALFALFA data are identified with low surface brightness optical counterparts in SDSS imaging when compared with VLA HI intensity maps, and appear to be galaxies with clear signs of ordered rotation. One source (AGC 208602) is likely tidal in nature. We find no "dark galaxies" in this limited sample. The present observations reveal complex sources with suppressed star formation, highlighting both the observational difficulties and the necessity of synthesis follow-up observations to understand these extreme objects. (abridged)Comment: Astronomical Journal, in pres

    SPM to the heart: mapping of 4D continuous velocities for motion abnormality quantification

    Get PDF
    International audienceThis paper proposes to apply parallel transport and statistical atlas techniques to quantify 4D myocardial motion abnormalities. We take advantage of our previous work on cardiac motion , which provided a continuous spatiotemporal representation of velocities, to interpolate and reorient cardiac motion fields to an unbiased reference space. Abnormal motion is quantified using SPM analysis on the velocity fields, which includes a correction based on random field theory to compensate for the spatial smoothness of the velocity fields. This paper first introduces the imaging pipeline for constructing a continuous 4D velocity atlas. This atlas is then applied to quantify abnormal motion patterns in heart failure patients

    Prompt muon contribution to the flux underwater

    Get PDF
    We present high energy spectra and zenith-angle distributions of the atmospheric muons computed for the depths of the locations of the underwater neutrino telescopes. We compare the calculations with the data obtained in the Baikal and the AMANDA muon experiments. The prompt muon contribution to the muon flux underwater due to recent perturbative QCD-based models of the charm production is expected to be observable at depths of the large underwater neutrino telescopes. This appears to be probable even at rather shallow depths (1-2 km), provided that the energy threshold for muon detection is raised above ∌100\sim 100 TeV.Comment: 7 pages, RevTeX, 7 eps figures, final version to be published in Phys.Rev.D; a few changes made in the text and the figures, an approximation formula for muon spectra at the sea level, the muon zenith-angle distribution table data and references adde

    Simultaneous X-Ray and TeV Gamma-Ray Observations of the TeV Blazar Markarian 421 during February and May 2000

    Full text link
    In this paper we present the results of simultaneous observations of the TeV blazar Markarian 421 (Mrk 421) at X-ray and TeV Gamma-ray energies with the Rossi X-Ray Timing Explorer (RXTE) and the stereoscopic Cherenkov Telescope system of the HEGRA (High Energy Gamma Ray Astronomy) experiment, respectively. The source was monitored from February 2nd to February 16th and from May 3rd to May 8th, 2000. We discuss in detail the temporal and spectral properties of the source. Remarkably, the TeV observations of February 7th/8th showed statistically significant evidence for substantial TeV flux variability on 30 min time scale. We show the results of modeling the data with a time dependent homogeneous Synchrotron Self-Compton (SSC) model. The X-ray and TeV gamma-ray emission strengths and energy spectra together with the rapid flux variability strongly suggest that the emission volume is approaching the observer with a Doppler factor of 50 or higher. The different flux variability time scales observed at X-rays and TeV Gamma-rays indicate that a more detailed analysis will require inhomogeneous models with several emission zones.Comment: Accepted for Publication in ApJ, 21 Pages, 5 Figure
    • 

    corecore